Let $S = [n]$. Given the equation \((eq): c_1 x + c_2 y = c_3 z\), for constants c_1, c_2, and c_3, let T be the subset of $[n]$ consisting of all solutions to the equation \((eq)\). For $r \in \mathbb{N}$, an exact r-coloring of $[n]$ is a surjective map $c : [n] \to [r]$. We say that a subset of T is rainbow if every element in the subset has a different color. The \textit{rainbow number of n with respect to the equation eq}, denoted $rb(n, eq)$, is the minimum number of colors needed to guarantee that any (exact) coloring of $[n]$ has a rainbow in T. Thus, $rb(n, c_1 x_1 + c_2 x_2 = c_3 x_3) = r$ implies that there exists an exact $(r - 1)$-coloring of $[n]$ that contains no rainbow solutions and that \textit{any} exact r-coloring of $[n]$ will contain a rainbow solution. Within this talk we will discuss upper and lower bounds for the rainbow number of $rb([n], x_1 + k x_2 = x_3)$, where $k \geq 1$. (Received September 25, 2018)