The poset $Y_{k,2}$ consists of $k + 2$ distinct elements $x_1, x_2, \ldots, x_k, y_1, y_2$, such that $x_1 \leq x_2 \leq \cdots \leq x_k \leq y_1, y_2$. The poset $Y'_{k,2}$ is the dual poset of $Y_{k,2}$. The sum of the k largest binomial coefficients of order n is denoted by $\Sigma(n,k)$. Let $\text{La}^2(n, \{Y_{k,2}, Y'_{k,2}\})$ be the size of the largest family $F \subseteq 2^{[n]}$ that contains neither $Y_{k,2}$ nor $Y'_{k,2}$ as an induced subposet.

Methuku and Tompkins proved that $\text{La}^2(n, \{Y_{2,2}, Y'_{2,2}\}) = \Sigma(n,2)$ for $n \geq 3$ and conjectured the generalization that if $k \geq 2$ is an integer and $n \geq k+1$, then $\text{La}^2(n, \{Y_{k,2}, Y'_{k,2}\}) = \Sigma(n,k)$. On the other hand, it is known that $\text{La}^2(n, Y_{k,2})$ and $\text{La}^2(n, Y'_{k,2})$ are both strictly greater than $\Sigma(n,k)$. In this talk, we introduce a simple approach, motivated by discharging, to prove this conjecture. (Received September 06, 2018)