Let G be the class of countably infinite graphs of connectivity 1. We give necessary and sufficient conditions for a graph in G to be lobe-transitive. We further show that given any biconnected graph L, any subgroup H of $\text{Aut}(L)$, and a prescribed list of multiplicities of H-orbits, there exists a unique lobe-transitive graph $G \in G$ whose lobes are isomorphic to L and such that the multiset of H-orbits of copies of L to which each vertex of G belongs is determined by the given list. These results are then applied to give necessary and sufficient conditions for a graph in G to be edge-transitive. (Received September 13, 2018)