In this project, we introduce some connectivity indices of a graph. A topological index is a numeric quantity from the structural graph of a molecule. Let $G = (V, E)$ be a connected graph. The K Banhatti indices were introduced by Kulli in 2016. They are defined as $B_1(G) = \sum_{ue} [d_G(u) + d_G(e)]$ and $B_2(G) = \sum_{ue} d_G(u) d_G(e)$, where ue means that the vertex u and edge e are incident and $d_G(e)$ denotes the degree of the edge e in G. In this work, formulas for the K Banhatti index of several derived graphs are obtained. Analogous to other topological polynomials, the K Banhatti-polynomial of graph G is also defined. We also determine K Banhatti and K Banhatti-polynomial for certain important chemical structures like nanotubes covered by C5 and C7. (Received September 15, 2018)