Melanie Ferreri* (fermj15@wfu.edu) and Jacob Liddy (liddyjacob@gmail.com). Ramsey Problems for Cycles versus \(K_5 \).

For graphs \(F, G, \) and \(H \), if all red-blue edge colorings of \(F \) contain either red \(G \) or blue \(H \) as a subgraph, then we write \(F \rightarrow (G, H) \). The Ramsey number for graphs \(G \) and \(H \), denoted \(R(G, H) \), is the smallest integer \(s \) such that \(K_s \rightarrow (G, H) \). It is known that \(R(C_n, K_5) = 4n - 3 \) for \(n \geq 5 \). We prove that for all \(n \geq 5 \), any graph on \(4n - 4 \) vertices which does not contain \(C_n \) or an independent set of order 5 contains \(4K_{n-1} \), and thus we characterize all Ramsey-critical graphs for \(C_n \) versus \(K_5 \). The graph \(K_{s-1} \uplus K_{1,t} \) is constructed by adding a vertex to \(K_{s-1} \) and joining it to \(t \) of its vertices. The star-critical Ramsey number \(r_*(G, H) \) is defined as the minimum \(t \) such that \(K_{s-1} \uplus K_{1,t} \rightarrow (G, H) \), where \(s = R(G, H) \). Values of \(r_*(C_n, K_m) \) are known for \(m \in \{3, 4\} \). In this work, we extend this to \(m = 5 \) and some cases for \(m = 6 \), and we present computational proofs of small cases and a computer-free proof of the general result for \(n \geq 8 \) and \(m = 5 \). We also compile a survey of known star-critical Ramsey numbers involving simple graphs such as cycles, paths, and fans. (Received July 28, 2018)