Given a finitely generated group \(F \) and a complex reductive Lie group \(G \), the \(G \)-character variety of \(F \), \(X_{FG} = \text{Hom}(F,G)/\!/G \), is typically a singular algebraic variety, defined over the integers, and some of its geometric, topological and arithmetic properties can be encoded in a polynomial generalization of the Euler-Poincaré characteristic: the \(E \)-polynomial. The most interesting cases are when \(F \) is the fundamental group of a Kähler manifold \(M \), since then \(X_{FG} \) is homeomorphic to a space of \(G \)-Higgs bundles over \(M \). In this seminar, concentrating in the case of the general linear group \(G = GL(n, \mathbb{C}) \), we present a remarkable relation between the \(E \)-polynomials of \(X_{FG} \) and those of \(X_{\text{irr}F,G} \), the locus of irreducible representations of \(F \) into \(G \). We will also give an overview of known explicit computations of \(E \)-polynomials, as well as some conjectures and open problems. (Received September 24, 2018)