In joint work with Gregg Zuckerman the notion of a small subalgebra was introduced. That is, given a simple Lie algebra \(g \) and a simple subalgebra \(k \), we say that \(k \) is small in \(g \) if there exists a positive integer \(b \) (depending only on \(g \) and \(k \)) such that in the restriction to \(k \) of each finite dimensional representation of \(g \) there exists an irreducible \(k \)-representation of dimension at most \(b \).

We assume the field is \(\mathbb{C} \). Let \(n \geq 3 \). Given any subalgebra, \(\mathfrak{t} \), of \(\mathfrak{sl}_n \), if \(\mathfrak{t} \cong \mathfrak{sl}_2 \) then \(\mathfrak{t} \) is small in \(\mathfrak{sl}_n \). In joint work with Hassan Lhou the speaker found that \(n \) is a best possible bound \(b \) in this case.

The question of when \(\mathfrak{t} \cong \mathfrak{sl}_k \) is small in \(\mathfrak{sl}_n \) is related to the notion of plethysm. Using a well understood interpretation of plethysm, we relate the question of small \(\mathfrak{t} \cong \mathfrak{sl}_k \) to the representation theory of the symmetric group. (Received September 24, 2018)