We consider regular Hausdorff spaces that are Hereditarily Good (HG). The HG property is a natural strengthening of both Hereditarily Separable (HS) and Hereditarily Lindelöf (HL). A space X has the property HG iff X has no weakly separated ω_1-sequences iff for all assignments $U = \langle (x_{\alpha}, U_{\alpha}) : \alpha < \omega_1 \rangle$, where each $x_{\alpha} \in U_{\alpha}$ and each U_{α} is open, $\exists \alpha \neq \beta \ [x_{\beta} \in U_{\alpha} \& x_{\alpha} \in U_{\beta}]$. Then, as for HS and HL, (see, for example, the S and L surveys by Rudin or Roitman) a space X is strongly HG (stHG) if each finite power X^n is HG. Replacing the pair α, β by \aleph_1 elements of X strengthens stHG to super HG (suHG); that is, a space X is suHG iff $\forall U \ \exists I \in [\omega_1]^{\aleph_1} \ \forall \alpha, \beta \in I \ [x_{\alpha} \in U_{\beta}]$. So every space having countable net weight is trivially suHG. We introduce an HG property that is equivalent to countable net weight. (Received September 14, 2018)