Let \(\{\varphi_k\}_{k=0}^{\infty} \) be a sequence of orthonormal polynomials on the unit circle (OPUC) with respect to a probability measure \(\mu \). We study the variance of the number of zeros of random linear combinations of the form

\[
P_n(z) = \sum_{k=0}^{n} \eta_k \varphi_k(z),
\]

where \(\{\eta_k\}_{k=0}^{n} \) are complex-valued random variables. Under the assumption that \(\mu \) satisfies \(d\mu(\theta) = w(\theta)d\theta \), with \(w(\theta) \geq c > 0 \) for \(\theta \in [0, 2\pi) \), and the distribution for each \(\eta_k \) satisfies certain uniform bounds for the fractional and logarithmic moments, we show that the variance of the number of zeros of \(P_n \) in annuli that contain the unit circle is at most of the order \(n^{\frac{1}{2}} \sqrt{n \log n} \) as \(n \to \infty \). When \(\mu \) is symmetric with respect to conjugation and in the Nevai class, and \(\{\eta_k\}_{k=0}^{n} \) are i.i.d. complex-valued standard Gaussian, we prove a formula for the limiting value of variance of the number of zeros of \(P_n \) in annuli that do not contain the unit circle. (Received July 18, 2018)