Using bordered Floer theory, we construct an invariant \(\widehat{HF}^{\text{orb}}(Y_{\text{orb}}) \) for 3-orbifolds \(Y_{\text{orb}} \) with singular set a knot that generalizes the hat flavor \(\widehat{HF}(Y) \) of Heegaard Floer homology for closed 3-manifolds \(Y \). We show that for a large class of 3-orbifolds \(\widehat{HF}^{\text{orb}} \) behaves like \(\widehat{HF} \) in that \(\widehat{HF}^{\text{orb}} \), together with a relative \(\mathbb{Z}_2 \)-grading, categorifies the order of \(H_1^{\text{orb}} \). When \(Y_{\text{orb}} \) arises as Dehn surgery on an integer-framed knot in \(S^3 \), we use the \(\{-1,0,1\} \)-valued knot invariant \(\varepsilon \) to determine the relationship between \(\widehat{HF}^{\text{orb}}(Y_{\text{orb}}) \) and \(\widehat{HF}(Y) \) of the 3-manifold \(Y \) underlying \(Y_{\text{orb}} \). (Received August 22, 2018)