Tom Edgar (edgartj@plu.edu) and David Richeson* (richesod@dickinson.edu). Gregory’s theorem for inscribed and circumscribed regular polygons.

Archimedes famously used the perimeters of inscribed and circumscribed regular polygons to approximate the circumference of a circle and thus to obtain bounds for \(\pi \). In 1667, James Gregory did the same, but for areas. Let \(I_k \) and \(C_k \) denote the areas of inscribed and circumscribed regular \(k \)-gons, respectively. Gregory proved that for all \(n \), \(I_{2n} \) is the geometric mean of \(C_n \) and \(I_n \), and \(C_{2n} \) is the harmonic mean of \(C_n \) and \(I_{2n} \). In this talk we give a brief history of Gregory’s work and we present a short proof of his theorem. (Received September 25, 2018)