We prove that for a fixed integer q, there exits an integer N such that the product $\Omega_2^q(n, D) = (1^2 + Dq^2)(2^2 + Dq^2) \ldots (n^2 + Dq^2)$ is never a square for $D = 2, 3$ and 7 when $n > N$.

In particular, we can ask that how often does the product of consecutive values of a polynomial become a power? In 2008, J. Cilleruelo proved that $\Omega_2^1(n, 1)$ is a square only for $n = 3$. After his work, many similar results were given for different polynomials as in [4],[5],[6],[7] and [8]. These type of products are studied for quadratic form $x^2 + y^2$ in [7] and for the cubic form $x^3 + y^3$ recently in [8]. In this work, we will study the product of consecutive values of the binary quadratic forms such as $x^2 + Dy^2$ for $D = 2$ and 3. (Received September 25, 2018)