The abundancy index of a positive integer n is the ratio of the sum of its divisors to itself; the abundancy index of n is two if and only if n is perfect. An abundancy outlaw is a rational number greater than one that fails to be the abundancy index of any positive integer. We generalize previous results about abundancy outlaws by defining a two variable abundancy index function as $I(x, n): \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Q}$ where $I(x, n) = \frac{\sum_{d \mid n} dx}{n}$. By exploring upper bound properties of the abundancy index, we construct sufficient conditions for rationals greater than one that fail to be in the image of $I(x, n)$. Finally, we apply these results to observe properties of perfect numbers under the two variable abundancy index. (Received September 25, 2018)