While examining the random process of the form $X_{n+1} = AX_n + B_n \pmod{p}$ where $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ is a fixed matrix, B_0, B_1, B_2, \ldots are independent and identically distributed on $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, we come upon the Fibonacci sequence. Keeping in mind the goal of bounding the rate of convergence of this process to the uniform distribution, we discuss the Fourier Transform and its role in this setting. We also introduce an expansion we call the Fibonary expansion useful in analyzing the Fourier Transform. (Received September 25, 2018)