Let \(q \) be a prime power and \(\mathbb{F}_{q} \) be the field of \(q \) elements. For \(i = 2, 3 \), let \(P_i = L_i = \mathbb{F}_{q}^i \) and \(f_2 \in \mathbb{F}_{q}[X_1, Y_1], f_3 \in \mathbb{F}_{q}[X_1, Y_1, X_2, Y_2] \) be polynomials over \(\mathbb{F}_{q} \). We define \(\Gamma_2 = \Gamma(q; f_2) \) to be the bipartite graph with partition sets \(P_2 \) and \(L_2 \) such that \(p = (p_1, p_2) \in P_2 \) and \(l = [l_1, l_2] \in L_2 \) are adjacent if and only if
\[
p_2 + l_2 = f_2(p_1, l_1).
\]
Similarly, we define \(\Gamma_3 = \Gamma(q; f_2, f_3) \) to be the bipartite graph with partition sets \(P_3 \) and \(L_3 \) such that \(p = (p_1, p_2, p_3) \in P_3 \) and \(l = [l_1, l_2, l_3] \in L_3 \) are adjacent if and only if
\[
p_2 + l_2 = f_2(p_1, l_1)
\]
\[
p_3 + l_3 = f_3(p_1, l_1, p_2, l_2).
\]
The canonical projection \(\Phi : \mathbb{F}_{q}^{3} \to \mathbb{F}_{q}^{2}, \langle v_1, v_2, v_3 \rangle \leftrightarrow \langle v_1, v_2 \rangle \) induces a surjective \(q \)-to-1 map \(\Phi : V(\Gamma_3) \to V(\Gamma_2) \) by \((p_1, p_2, p_3) \mapsto (p_1, p_2) \) and \([l_1, l_2, l_3] \mapsto [l_1, l_2] \). This map \(\Phi \) is a graph homomorphism, and so we call \(\Gamma_3 \) a \(q \)-lift of \(\Gamma_2 \).

We present some properties of \(q \)-lifts and explain how their specializations relate to finite geometries. (Received September 15, 2019)