Matroids were introduced to provide an abstract generalization of the notion of linear dependence. This talk begins by introducing matroids, nested matroids, and laminar matroids. One characterization of laminar matroids is that, for all circuits $C_1 \cap C_2 \neq \emptyset$, either C_1 is in the closure of C_2, or C_2 is in the closure of C_1. We use this characterization to define two infinite families of generalized laminar matroids and give structural results for these classes. (Received September 16, 2019)