Conway’s Wizard Problem can be mathematically summarized in the following way. Given a sum s and a product p, do there exist two n-partitions of s into distinct multisets such that both multisets have the same product p? If there are, we call s sum-admissible and p product-admissible. From this context, we define the following two functions. (1) $f(s) =$ number of n values such that s is sum-admissible. (2) $g(s) =$ number of p values such that s is sum-admissible; the case $g(s) = 1$ is precisely what we need to solve Conway’s problem. We derive and prove the formula for $f(s)$, and determine the value of s that gives $g(s) = 1$. (Received September 16, 2019)