Let $F(d, q)$ denote the set of monic, degree d, polynomials over the finite field \mathbb{F}_q. For $f \in F(d, q)$, let $\text{Per}(f)$ denote the number of periodic points of f over \mathbb{F}_q. Fixing d, as $q \to \infty$, what happens to the average number of periodic points under each function in $F(d, q)$? In this talk, we will explore a heuristic to estimate this average, and compare the heuristic to data collected for some d and q. (Received September 05, 2019)