Let W_g be the set of \mathbb{F}_q-isogeny classes of abelian varieties of dimension g defined over \mathbb{F}_q. By Honda-Tate theory, W_g is identified with the set of q-Weil polynomials of degree $2g$. We show that certain congruence conditions on the coefficients of a q-Weil polynomial preclude the corresponding isogeny class from containing a hyperelliptic jacobian. In particular, as $q \to \infty$ this result implies that asymptotically at least 25% of q-isogeny classes of abelian threefolds over \mathbb{F}_q do not contain the jacobian of a smooth hyperelliptic curve defined over \mathbb{F}_q. (Received September 12, 2019)