Janusz Konieczny* (jkoniecz@umw.edu), University of Mary Washington, Department of Mathematics, Fredericksburg, VA 22401. Maximal Commutative Subsemigroups of a Finite Semigroup.
Let S be a finite non-commutative semigroup. This talk will be concerned with the problem of finding maximal commutative subsemigroups of S, that is, commutative subsemigroups of S that are not properly included in any commutative subsemigroup of S.

For an element $a \in S$, denote by $C^{2}(a)$ the second centralizer of a in S, which is the set of all elements $b \in S$ such that $b x=x b$ for every $x \in S$ that commutes with a. It is clear that $C^{2}(a)$ is a commutative subsemigroup of S. Let M be any maximal commutative subsemigroup of S. Then $C^{2}(a) \subseteq M$ for every $a \in M$. We define the commutative rank (c-rank) of M as the minimum cardinality of a set $A \subseteq M$ such that $\bigcup_{a \in A} C^{2}(a)$ generates M.

I will present a general approach to the problem of finding maximal commutative subsemigroups of S of c-rank 1 and 2. Note that if S is a finite group, then the commutative subsemigroups of S are the abelian subgroups of S. Let S_{n} be the symmetric group on n elements. I will use the general approach to determine the maximal abelian subgroups of S_{n} of c-rank 1 and describe a class of maximal abelian subgroups of S_{n} of c-rank at most 2. (Received September 07, 2019)

