Consider
\[
\begin{cases}
 (-\Delta)^{\alpha/2} u(x) = f(x, u(x), v(x)), & x \in \Omega, \\
 (-\Delta)^{\beta/2} v(x) = g(x, u(x), v(x)), & x \in \Omega, \\
 u(x) = v(x) = 0, & x \in \mathbb{R}^n \setminus \Omega,
\end{cases}
\]
where $f, g \in C(\Omega, R^2)$, Ω is bounded in \mathbb{R}^n and $\partial \Omega$ is C^2. When the solution (u, v) is a priori bounded, under some assumptions on $f(x, t, s)$ and $g(x, t, s)$ about their super-linearity with respect to t and s near zero and infinity, we prove that there exists at least one positive solution (u, v) using the topological degree theory. (Received September 05, 2019)