Given a dynamical system (X, T) one can define a *speedup* of (X, T) as another dynamical system $S : X \rightarrow X$ where $S(x) = T^{p(x)}(x)$ for some $p : X \rightarrow \mathbb{Z}^+$. We call p the jump function. This talk will focus on *strong speedups*, a speedup where the jump function has one point of discontinuity. We will present a theorem characterizing when, given two minimal Cantor systems one system is a strong speedup of the other. The theorem is closely related to Giordano, Putnam, and Skau’s characterization theorem for Strong Orbit Equivalence. This is joint work with Nic Ormes. Finally, time permitting, we will discuss current work, with Andrew Dykstra and Michelle LeMasurier, on speedups of Toeplitz flows with bounded jump functions. (Received September 15, 2019)