We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the
groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits
arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the
diagram. Given a simple full group G admitting only a finite number of ergodic measures on the path-space X of the
associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of G arises as the stabilizer
distribution of the diagonal action on X^n for some $n \geq 1$. As a corollary, we establish that every group character χ of G
has the form $\chi(g) = \text{Prob}(g \in K)$, where K is a conjugation-invariant random subgroup of G. (Received September 15, 2019)