Recent work by Baum, Guentner, and Willett, and further developed by Buss, Echterhoff, and Willett introduced a crossed-product functor that involves tensoring an action with a fixed action \((C, \gamma)\), then forming the image inside the crossed product of the maximal-tensor-product action.

Here we discuss an analogue for a fixed coaction \((D, \zeta)\) of a discrete group. Composing our tensor-product coaction functor with the full (action) crossed product of an action reproduces the crossed-product functor of the above-mentioned authors. We show that every such tensor-product coaction functor is exact, and that the tensor-product coaction functor associated to the dual coaction on \(\ell^\infty(G) \rtimes G\) is minimal.

Our techniques involve a “\(G\)-balanced Fell bundle” \(A \otimes_G D\), whose cross-sectional \(C^*\)-algebra embeds faithfully in the maximal tensor product \(A \otimes_{\text{max}} D\). (Received September 16, 2019)