The Reidemeister trace of an endomorphism of a CW complex is a lower bound for the number of fixed points (up to homotopy) of that endomorphism. For an endomorphism f, the Reidemeister trace of f^n is a lower bound for the number of fixed points of f^n, however it can be a far from an optimal lower bound.

There are many related invariants that refine the Reidemeister trace and have different strengths and weaknesses in regards to their computation and realizability. In this talk we will describe a classes of spaces where these invariants can be computed and realized using the classical Lefschetz fixed point theorem. (Received September 17, 2019)