In this preliminary report, we examine whether any feedforward controllers give the same convergence rate of wave tracking errors. The wave dynamics is governed by the wave equation and the exogenous wave signal to be tracked is governed by a finite dimensional exogenous system. We introduce a straightforward method of translation of exogenous signal dependent equilibrium to derive regulator equations and then show both theoretically and numerically that the feedforward controllers synthesized from any solutions of the regulator equations give the same convergence rate of the tracking errors. This could agree with physical situations such as violin playing and drumming, where a player can play a violin bow on any part of a violin string or beat a drumhead at any locations. Moreover, we present new explicit and concrete solutions of the wave regulator equations in the case where the finite dimensional exogenous system has a block diagonal state matrix, which is frequently used in applications. (Received August 29, 2019)