Let $G$ be a finite abelian group, written additively. The Davenport constant $D(G)$ is the smallest positive number $s$ such that for any set $\{g_1, g_2, \ldots, g_s\}$ of $s$ elements in $G$, with repetition allowed, there exists a subset $\{g_{i_1}, g_{i_2}, \ldots, g_{i_t}\}$ such that $g_{i_1} + g_{i_2} + \cdots + g_{i_t} = 0$. The plus-minus Davenport constant, $D_{\pm}(G)$, is defined similarly but instead we only require that $g_{i_1} \pm g_{i_2} \pm \cdots \pm g_{i_t} = 0$. In this talk, we study the best known estimates for $D_{\pm}(G)$ when $G = C_2 \oplus C_3^n$. (Received September 11, 2019)