Let $A = (A_1, \ldots, A_m)$ be an m-tuple of bounded linear operators acting on a Hilbert space \mathcal{H}. Their joint (p, q)-matricial range $\Lambda_{p,q}(A)$ is the collection of $(B_1, \ldots, B_m) \in M_q^m$, where $I_p \otimes B_j$ is a compression of A_j on a pq-dimensional subspace. This definition covers various kinds of generalized numerical ranges for different values of p, q, m. In this talk, we will show that $\Lambda_{p,q}(A)$ is star-shaped if the dimension of \mathcal{H} is sufficiently large. If $\dim \mathcal{H}$ is infinite, we consider the joint essential (p, q)-matricial range

$$\Lambda_{p,q}^{\text{ess}}(A) = \bigcap \{ \text{cl}(\Lambda_{p,q}(A_1 + F_1, \ldots, A_m + F_m)) : F_1, \ldots, F_m \text{ are compact} \},$$

and show that it is always non-empty, compact and convex. This is the joint work with Chi-Kwong Li, Yiu-Tung Poon, Nung-Sing Sze. (Received August 29, 2019)