Rebecca R.G.* (rirebhuh@syr.edu), Claudia Miller and Hamid Rahmati. Betti numbers of Frobenius powers of ideals in characteristic $p>0$. Preliminary report.
Let $R=k\left[x_{1}, \ldots, x_{d}\right] /(f)$ where k is a field of characteristic $p>0$, and f a nonzero element of R. In the case where $d=3$ and $f=x_{1}^{n}+x_{2}^{n}+x_{3}^{n}$, work of Kustin, Rahmati, and Vraciu indicates that the syzygies of p^{e} th bracket powers $I^{\left[p^{e}\right]}$ of $I=\left(x_{1}^{N}, x_{2}^{N}, x_{3}^{N}\right)$ cycle through a finite number of modules as e increases. We examine the behavior of the betti numbers of $I^{\left[p^{e}\right]}$ when $d=3$ but f is chosen generically, using the method of finding resolutions via inverse systems as developed by El Khoury-Kustin and Miller-Rahmati. (Received February 19, 2018)

