Leigh C Becker* (lbecker@cbu.edu), Department of Mathematics, Christian Brothers University, 650 E. Parkway S., Memphis, TN 38104, and T A Burton (taburton@olymp.com), 732 Caroline St., Port Angeles, WA 98362. Fixed Points and Stability of a Volterra Equation with Variable Delay.

The scalar nonconvolution equation (1) \(x'(t) = - \int_{t-r(t)}^{t} a(t, s)g(x(s)) \, ds \) with variable delay \(r(t) \geq 0 \) is investigated, where \(t - r(t) \) is increasing and \(xg(x) > 0 \) \((x \neq 0)\) in a neighborhood of \(x = 0 \). We find conditions for \(r, a, \) and \(g \) so that for a given continuous initial function \(\psi \) a mapping \(P \) for (1) can be defined on a complete metric space \(C_{\psi} \) so that \(P \) has a unique fixed point. The end result is not only conditions for the existence and uniqueness of solutions of (1) but also for the stability of the zero solution. We also find conditions ensuring the zero solution is asymptotically stable by changing to a weighted exponential metric on a closed subset of \(C_{\psi} \). Finally, we parlay the methods for (1) into results for (2) \(x'(t) = - \int_{t-r(t)}^{t} a(t, s)g(s, x(s)) \, ds \). (Received October 05, 2004)