Let \(F = (f_1, f_2, f_3) \) be a compactly supported vector field on \(\mathbb{R}^3 \). The Doppler transform of \(F \) is defined by

\[
DF(x, \omega) = \int_{\mathbb{R}} \sum_j \omega_j f_j(x + t\omega) \, dt
\]

where \(x \in \mathbb{R}^3 \) and \(\omega \in S^2 \) together specify a line in \(\mathbb{R}^3 \). Given a smooth curve \(C \) in \(\mathbb{R}^3 \) we consider \(\mathcal{D}_C \), the Doppler transform restricted to lines intersecting \(C \). We determine the extent to which the singularities of \(F \) can be recovered from those of \(\mathcal{D}_C F \). (Received October 03, 2004)