Given a family F of Borel sets in a Polish space X, we consider the problem of the existence of a Borel set B in the product of X with another Polish space Y such that each element of F occurs exactly once as a Y-section of B. Such a Borel is said to uniquely represent F. If every Y-section of B is an element of F, then B is said to be uniquely universal for F. We study the existence of such sets for the family of (a) countable, (b) countable unions of compact sets or (c) countable unions of closed subsets of X. If time permits, other families will be mentioned. This is joint work with Su Gao, Steve Jackson and Miklos Laczkovich. (Received September 19, 2005)