A 3-connected matroid M is said to be \textit{minimally 3-connected} if, for any element e of M, the matroid $M\setminus e$ is not 3-connected. Dawes (\textit{J. Combin. Theory Ser. B} \textbf{40}, (1986), 159-168) showed that all minimally 3-connected graphs can be constructed from K_4 such that every graph in each intermediate step is also minimally 3-connected. Oxley (1981) proved a similar result by giving a characterization of minimally 2-connected matroids. In this paper we generalize Dawes’ result to minimally 3-connected binary matroids. We give a constructive characterization and construction of all minimally 3-connected binary matroids starting from W_3, the 3-spoked wheel, and F^*_7, the Fano dual. (Received September 26, 2005)