Let \(\mathbb{R}_\tau \) denote the real numbers equipped with the topology \(\tau \). Suppose \(\tau \) is a topology on the real numbers \(\mathbb{R} \) which is finer than the usual topology such that \(\mathbb{R}_\tau \) is a weak \(P \)-space, that is, a space in which countable sets are closed. We are interested in the lattice \(C(X, \mathbb{R}_\tau) \). Recall that a lattice \(L \) is conditionally (\(\sigma \))-complete if every (countable) subset of \(L \) which is bounded above has a supremum. A lattice \(L \) is said to have the property (I) if the following holds: for any two countable sets \(\{x_n\}, \{y_m\} \) with \(x_n \leq y_m \) for all natural numbers \(n, m \), there exists \(h \) in \(L \) such that \(x_n \leq h \leq y_n \) for all \(n \). We characterize when \(C(X, \mathbb{R}_\tau) \) is conditionally (\(\sigma \))-complete and when it has the property (I). (Received September 08, 2005)