An algebraic group G is called Cayley if there exists a birational isomorphism between G and its Lie algebra \mathcal{G} which is equivariant with respect to the conjugation action of G on itself and the adjoint action of G on \mathcal{G}. Cayley was the first to construct such a birational isomorphism for SO_n. Luna asked whether or not maps with these properties can be constructed for other algebraic groups. We proved in earlier work that the answer to Luna’s question is usually ”no” with a few exceptions. In particular, a Cayley map for the group SL_n exists if and only if $n \leq 3$. The negative results were proved by methods of integral representation theory. We now examine bounds on the Cayley degree of an algebraic group, a measure of the obstruction for an algebraic group to be Cayley. This is joint work with Vladimir Popov and Zinovy Reichstein. (Received September 27, 2005)