A matrix $A \in M_n(C)$ is called *Hermitian* if $A = A^*$. A Hermitian matrix with nonnegative eigenvalues are called *positive semi-definite (PSD)* matrices. Given a Hermitian matrix A we associate a simple, undirected graph G with $V(G) = \{1 \cdots n\}$ and edges $E(G) = \{(i, j) \mid a_{ij} \neq 0, i \neq j\}$. The graph is independent of the diagonal entries of A. The *minimum positive semi-definite (PSD) rank* of G, denoted $msr(G)$, is the minimum rank of A where A varies over all PSD matrices with graph G.

For a simple connected graph G we define the *tree size of G*, denoted $ts(G)$, as the number of vertices in the maximum induced tree in G, and the *clique cover number*, denoted $c(G)$, as the smallest number of cliques needed to cover all the edges in G.

In this paper we present some results on the minimum PSD rank of some classes of graphs, including bipartite graphs, non-chordal graphs for which $msr(G) = c(G)$, and graphs for which $msr(G) = ts(G) - 1$. Also, we present some additive properties of $msr(G)$ for a graph G that can be identified as overlapping sum of two subgraphs by considering the effect of edge cancellation on the graph.

(Received July 29, 2005)