We study the subgroup $B_0(G)$ of $H^2(G, \mathbb{Q}/\mathbb{Z})$ consisting of all elements which have trivial restrictions to every Abelian subgroup of G. It was shown that the group $B_0(G)$ serves as the simplest nontrivial obstruction to stable rationality of algebraic varieties V/G and coincides with geometric birational invariant of a smooth projective model \tilde{V}/G for V/G, the so-called unramified Brauer group, introduced earlier by Artin and Mumford, where G is a finite (algebraic) group and V is a faithful complex linear representation of G. This fact reduces the computation of the Artin-Mumford invariant V/G to a purely group-theoretical question. Bogomolov’s Conjecture states that for any finite simple group G, $B_0(G) = 0$. We have proved that $B_0(G)$ is trivial for finite simple groups of Lie type A_ℓ. (Received September 24, 2005)