The existence of a positive solution is obtained for the n^{th}-order right focal boundary value problem $y^{(n)} = f(x, y)$, $0 < x \leq 1$, $y(0) = y'(0) = y''(0) = \cdots = y^{(n-3)}(0) = y^{(n-2)}(p) = y^{(n-1)}(1) = 0$, where $\frac{1}{2} < p < 1$ is fixed and where $f(x, y)$ is singular at $x = 0, y = 0$, and possibly at $y = \infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone. (Received September 26, 2005)