I will describe the space $\text{BMO}(\mathbb{R})$ in terms of its closely related, simpler dyadic counterpart. As a result of this characterization it is possible to establish when a bounded linear operator that maps a Banach space into dyadic $\text{BMO}(\mathbb{R})$ actually maps continuously into $\text{BMO}(\mathbb{R})$. This, and other closely related characterizations, give new ways to look at the conditions of the $T(1)$ theorem, including an essentially dyadic version. (Received September 15, 2005)