A subspace S of a metric space (M, d) admits a simultaneous Lipschitz extension, if there is a linear continuous operator $E : \text{Lip}(S) \to \text{Lip}(M)$ such that $E f|_S = f$. Set $\lambda(S, M) := \inf \|E\|$ and $\lambda(M) := \sup_{S \subset M} \lambda(S, M)$.

Question. What geometric properties of M imply finiteness of $\lambda(M)$.

We present several basic results which give an answer to this question for a wide range of metric spaces of various nature. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which $\lambda(M) = \infty$.

Our results are valid also for Banach-valued Lipschitz functions.

The results are obtained in collaboration with Yu. Brudnyi. (Received September 18, 2005)