A subspace V of a Banach space X is said to be *complemented* if there exists a (bounded) projection mapping X onto V. Obviously all subspaces of finite-dimension are complemented. The goal of this note is to show that there are (relatively) few *monotonically complemented* subspaces of finite-dimension in $X = (C[a, b], \|\cdot\|_\infty)$; that is, finite-dimensional subspaces $V \subset X$ for which there exists a projection $P : X \to V$ such that Pf is monotone-increasing whenever f is. (Received September 26, 2005)