The equivalence of the net & open-filter process and the open C*-filter process of compactification.

The Open C*-filter Process: For each f in $C^*(X)$, there exists a real number $r(f)$ such that for any finite subset H of $C^*(X)$, the finite intersection $T(H,t)$ of the inverse images of open interval centered at $r(f)$ with radius t of f for f in H is non-empty. The collection of all finite intersection $T(H,t)$ for any finite subset H of $C^*(X)$ and any positive real number t is called an open C*-filter base. An open filter P containing some open C*-filter base is called an open C*-filter. Let X_0 be the collection of all open nhood filters N_x at x for all x in X, where N_x and N_y are different if x and y are different in X. Let Y be the collection of all open C*-filters that do not converge in X, and Z the union of X_0 and Y. For each non-empty open set U, let $S(U)$ be the collection of all open C*-filters P in Z such that U is in P. Equip Z with the topology induced by the collection of all $S(U)$ for all non-empty open sets U in X. Let h be the function from X to Z mapping x to N_x for all x in X. Then (Z, h) is a compactification of X. The Net & Open-filter Process: See AMS ABSTRACTS p.136 (993-54-25), V.25, No.1, Issue 135. Conclusion: The net & open-filter Process and the open C*-filter process of compactification of an arbitrary topological space X are equivalent. (Received September 27, 2005)