A new cut elimination method is obtained here by “proof mining” (unwinding) from the following non-effective proof that begins with extracting an infinite branch B when the canonical search tree T for a given formula E of first order logic is not finite. The branch B determines a semivaluation so that $B \models \bar{E}$.

(*) Every semivaluation can be extended to a total valuation.
For every derivation d of E and every model \mathcal{M}, $\mathcal{M} \models E$.
This is a contradiction showing that T is finite, $\exists \ell T < \ell$. A primitive recursive function $L(d)$ such that $T < L(d)$ is obtained using instead of (*)

(**) For every r if the canonical search tree T^{r+1} with cuts of complexity $r + 1$ is finite, then T^r is finite.
Here reduction of $(r + 1)$-cuts does not introduce new r-cuts but preserves only one of the branches. (Received July 28, 2006)