Weyl groups generalize permutation groups and are useful in many branches of mathematics. For a Weyl Group W, the set of involutions is $I = \{ w \in W | w = w^{-1} \}$. We studied a poset of involutions of the Weyl groups A_n and B_n, generated in the manner described by Haas and Helminck. We first give a formula for the rank of any element and use it to define a generating polynomial for the number of elements of each rank in both posets. We then propose a formula for the number of paths to the top-most element using Young Tableaux, based on the work of Stanley, Edelman, and Greene. We also give a combinatorial formula for the number of paths to other specific elements. In the last part of our talk, we discuss several interesting related results about the posets.

Faculty mentors: R. Haas and A. G. Helminck. REU program at NCSU supported by the NSF and NSA. (Received September 24, 2006)