Given a multigraph G on the vertices $\{v_1, \ldots, v_n\}$, in which all edges are multiedges, we associate a set of nonzero vectors $\vec{V} = \{\vec{v}_1, \ldots, \vec{v}_n\}$ in \mathbb{C}^n to the vertices of G in the following manner: If vertices v_i and v_j are not joined then the corresponding vectors \vec{v}_i and \vec{v}_j are orthogonal. The rank of a vector representation \vec{V} is the maximum number of linearly independent vectors in \vec{V}. The minimum vector rank of G, $\text{mvr}(G)$, is the minimum rank among all vector representations of G.

We present methods for determining $\text{mvr}(G)$ if G is among certain classes of graphs, including perfect graphs and cycles. Further, we present upper and lower bounds on $\text{mvr}(G)$ for all multigraphs that contain only multiedges, and provide a conjecture on the exact value of $\text{mvr}(G)$ for such multigraphs. (Received July 28, 2006)