Let A be a separable C^*—algebra and A^{**} its enveloping W^*—algebra. A result of Akemann, Anderson, and Pedersen states that if (p_n) is a sequence of mutually orthogonal minimal projections in A^{**} such that $\sum_k p_n$ is closed, $\forall k$, then there is a MASA B in A such that each $\phi_n|B$ is pure and has a unique state extension to A, where ϕ_n is the pure state of A supported by p_n. We generalize this in two ways: It can be required that B contain an approximate identity of A, and the countable discrete space underlying the above can be replaced by a totally disconnected space. We consider two types of type I closed faces, both related to the above, atomic closed faces and closed faces with nearly closed extreme boundary (NCEB). A complement to Glimm’s theorem, which may or may not be new, arises from this. One specific question is whether an atomic closed face always has an “isolated point”. We give a counterexample for this and also show the answer is yes in the NCEB case. One of our examples is a type I closed face which is isomorphic to a closed face of every non-type I separable C^*—algebra and which is not isomorphic to a closed face of any type I C^*—algebra. (Received September 21, 2006)