For two graphs G and H, let the mixed Ramsey numbers, $\max R(n; G, H)$, ($\min R(n; G, H)$) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H. These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. In this talk, I will concentrate on two results:

1. $\max R(n; G, H)$, in most cases, does not depend on the graph G and can be expressed in terms of a vertex-arboricity of H;

2. $\min R(n; K_3, K_3)$ is determined exactly, as well as all extremal colorings. (Received September 19, 2007)