The fractional weak discrepancy $wd_F(P)$ of a poset $P = (V, \prec)$ is the minimum nonnegative k for which there exists a function $f : V \rightarrow \mathbb{R}$ satisfying (i) if $a \prec b$ then $f(a) + 1 \leq f(b)$ and (ii) if $a \parallel b$ then $|f(a) - f(b)| \leq k$. An $r + s$ is a disjoint union of two chains with r and s elements, respectively. Semiorders, which contain no induced $2 + 2$ or $3 + 1$, were characterized by their fractional weak discrepancy in Shuchat, Shull, and Trenk, ORDER, 23:51–63, 2006. Here we generalize this result to describe the range of values of $wd_F(P)$ based on whether or not P contains certain induced $r + s$ configurations. For example, we find the range of $wd_F(P)$ for interval orders with no induced $n + 1$. (Received September 20, 2007)