Supercharacter theories of cyclic p-groups.

If \mathcal{K} is a partition of a finite group G, there sometimes exists a compatible partition \mathcal{X} of the irreducible characters of G, along with a character χ_X for every $X \in \mathcal{X}$ with the elements of X as its irreducible constituents, so that each χ_X is constant on each $K \in \mathcal{K}$ and $|\mathcal{X}| = |\mathcal{K}|$. If $\{1\} \in \mathcal{K}$, then P. Diaconis and M. Isaacs have called such an ordered pair $(\mathcal{X}, \mathcal{K})$ a supercharacter theory.

We describe the set of all supercharacter theories (up to scaling) of the cyclic group of order p^n for an odd prime p, and we show that its cardinality is a polynomial in d of degree n, where d is the number of divisors of $p - 1$. (Received September 20, 2007)