
We discuss the oscillatory behavior of the nonlinear second-order functional dynamic equation

\[(p(t)x^{\Delta}(t))^\Delta + q(t)f(x(g(t))) = 0\]

on a time scale \(T \subset \mathbb{R}\) with \(\sup T = \infty\). We establish a sufficient and necessary condition which ensures that every solution oscillates. Next we establish the equivalence of the oscillation of the above dynamic equation and the nonlinear second-order dynamic equation

\[(p(t)x^{\Delta}(t))^\Delta + q(t)f(x^{\sigma}(t)) = 0\]

on time scales. Finally, we obtain a comparison theorem for the functional dynamic equation. (Received September 18, 2007)